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19C H A P T E R

Analysis of variance is a straightforward way to

examine the differences between groups of

responses that are measured on interval or

ratio scales.

After reading this chapter, you should be able to:

1 discuss the scope of the analysis of variance (ANOVA) technique

and its relationship to t test, and regression;

2 describe one-way analysis of variance, including decomposition

of the total variation, measurement of effects significance

testing, and interpretation of results;

3 describe n-way analysis of variance and the testing of the

significance of the overall effect, the interaction effect and the

main effect of each factor;

4 describe analysis of covariance and show how it accounts for

the influence of uncontrolled independent variables;

5 explain key factors pertaining to the interpretation of results

with emphasis on interactions, relative importance of factors

and multiple comparisons;

6 discuss specialised ANOVA techniques applicable to marketing,

such as repeated measures ANOVA, non-metric analysis of

variance, and multivariate analysis of variance (MANOVA).

Objectives

Stage 1

Problem definition

Stage 2

Research approach

developed

Stage 3

Research design

developed

Stage 4

Fieldwork or data

collection

Stage 6

Report preparation

and presentation

Stage 5

Data preparation

and analysis



 

Overview

In Chapter 18, we examined tests of differences between two means or two medians.
In this chapter, we discuss procedures for examining differences between more than
two means or medians. These procedures are called analysis of variance and analysis
of covariance. These procedures have traditionally been used for analysing experi-
mental data, but they are also used for analysing survey or observational data.

We describe analysis of variance and covariance procedures and discuss their rela-
tionship to other techniques. Then we describe one-way analysis of variance, the
simplest of these procedures, followed by n-way analysis of variance and analysis of
covariance. Special attention is given to issues in interpretation of results as they relate
to interactions, relative importance of factors, and multiple comparisons. Some spe-
cialised topics such as repeated measures analysis of variance, non-metric analysis of
variance, and multivariate analysis of variance are briefly discussed. We begin with an
example illustrating the application of analysis of variance.

Antacids are treatment for ANOVA1

An investigation was conducted to determine the role of ‘verbal content’ and ‘relative new-

ness of a brand’ in the effectiveness of a comparative advertising format, for over-the-counter

antacids. The measure of attitude towards the sponsoring brand was the dependent variable.

Three factors – advertising format, relative newness and verbal content – were the independ-

ent variables, each manipulated at two levels. Advertising format was either non-comparative

(1st) or comparative (2nd). In the comparative format, well-known brands (Rolaids and Tums)

were used for comparison. Relative newness was manipulated by changing the brand’s spon-

sor. Alka-Seltzer (1st) was the sponsor in the well-established brand treatment, whereas

Acid-Off (2nd) was the sponsor in the new brand condition. The name ‘Acid-Off’ was chosen

based on a pre-test. Verbal content was manipulated to reflect factual (1st) or evaluative con-

tent (2nd) in an ad. The subjects were recruited at a shopping centre and randomly assigned

to the treatment by an interviewer who was blind to the purpose of the study. A total of 207

responses was collected, 200 of which were usable. Twenty-five respondents were assigned

to each of the eight (2 × 2 × 2) treatments.

A three-way analysis of variance was performed, with attitude as the dependent variable.

The overall results were significant. The three-way interaction was also significant. The only

two-way interaction that was significant was between ad format and relative newness. A

major conclusion from these results was that a comparative format that emphasised factual

information was best suited for launching a new brand. ■

In this example, t tests were not appropriate because the effect of each factor was
not independent of the effect of other factors (in other words, interactions were sig-
nificant). Analysis of variance provided a meaningful conclusion in this study.

Relationship among techniques

Analysis of variance and analysis of covariance are used for examining the differences
in the mean values of the dependent variable associated with the effect of the con-
trolled independent variables, after taking into account the influence of the
uncontrolled independent variables. Essentially, analysis of variance (ANOVA) is
used as a test of means for two or more populations. The null hypothesis, typically, is
that all means are equal. For example, suppose that the researcher was interested in
examining whether heavy users, medium users, light users and non-users of yoghurt
differed in their preference for Muller yoghurt, measured on a nine-point Likert scale.
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The null hypothesis that the four groups were not different in preference for Muller
could be tested using analysis of variance.

In its simplest form, analysis of variance must have a dependent variable (preference

for Muller yoghurt) that is metric (measured using an interval or ratio scale). There

must also be one or more independent variables (product use: heavy, medium, light

and non-users). The independent variables must be all categorical (non-metric).

Categorical independent variables are also called factors. A particular combination of

factor levels, or categories, is called a treatment. One-way analysis of variance

(ANOVA) involves only one categorical variable, or a single factor. The differences in

preference of heavy users, medium users, light users and non-users would be examined

by one-way ANOVA. In one-way analysis of variance, a treatment is the same as a

factor level (medium users constitute a treatment). If two or more factors are involved,

the analysis is termed n-way analysis of variance. If, in addition to product use, the

researcher also wanted to examine the preference for Muller yoghurt of customers who

are loyal and those who are not, an n-way analysis of variance would be conducted.

If the set of independent variables consists of both categorical and metric variables,

the technique is called analysis of covariance (ANCOVA). For example, analysis of

covariance would be required if the researcher wanted to examine the preference of

product use groups and loyalty groups, taking into account the respondents’ attitudes

towards nutrition and the importance they attached to dairy products. The latter two

variables would be measured on nine-point Likert scales. In this case, the categorical

independent variables (product use and brand loyalty) are still referred to as factors,

whereas the metric-independent variables (attitude towards nutrition and impor-

tance attached to dairy products) are referred to as covariates.

The relationship of analysis of variance to t tests and other techniques, such as

regression (see Chapter 20), is shown in Figure 19.1. These techniques all involve a

metric-dependent variable. ANOVA and ANCOVA can include more than one inde-

pendent variable (product use, brand loyalty, attitude, importance, etc.).
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Furthermore, at least one of the independent variables must be categorical, and the

categorical variables may have more than two categories (in our example, product use

has four categories). A t test, on the other hand, involves a single, binary independent

variable. For example, the difference in the preferences of loyal and non-loyal respon-

dents could be tested by conducting a t test. Regression analysis, like ANOVA and

ANCOVA, can also involve more than one independent variable. All the independent

variables, however, are generally interval scaled, although binary or categorical vari-

ables can be accommodated using dummy variables. For example, the relationship

between preference for Muller yoghurt, attitude towards nutrition, and importance

attached to dairy products could be examined via regression analysis.

One-way analysis of variance

Marketing researchers are often interested in examining the differences in the mean

values of the dependent variable for several categories of a single independent vari-

able or factor. For example:

■ Do various market segments differ in terms of their volume of product consumption?

■ Do brand evaluations of groups exposed to different commercials vary?

■ Do retailers, wholesalers and agents differ in their attitudes towards the firm’s dis-

tribution policies?

■ How do consumers’ intentions to buy the brand vary with different price levels?

■ What is the effect of the types of business customer a company has, upon the

number of banks it holds accounts with?

The answer to these and similar questions can be determined by conducting one-way

analysis of variance. Before describing the procedure, we define the important statis-

tics associated with one-way analysis of variance.2

One-way analysis of variance
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eta2 (η2). The strength of the effects of X (independent variable or factor) on Y
(dependent variable) is measured by eta2 (η2). The value of η2 varies between 0
and 1.

F statistic. The null hypothesis that the category means are equal in the population is
tested by an F statistic based on the ratio of mean square related to X and mean
square related to error.

Mean square. This is the sum of squares divided by the appropriate degrees of free-
dom.

SSbetween. Also denoted as SSx, this is the variation in Y related to the variation in the
means of the categories of X. This represents variation between the categories of X

or the portion of the sum of squares in Y related to X.

SSwithin. Also denoted as SSerror, this is the variation in Y due to the variation within
each of the categories of X. This variation is not accounted for by X.

SSy. This is the total variation in Y.

Conducting one-way analysis of variance

The procedure for conducting one-way analysis of variance is described in Figure
19.2. It involves identifying the dependent and independent variables, decomposing
the total variation, measuring the effects, testing significance and interpreting the
results. We consider these steps in detail and illustrate them with some applications.

Identifying the dependent and independent variables

The dependent variable is denoted by Y and the independent variable by X, and X is a
categorical variable having c categories. There are n observations on Y for each cate-
gory of X, as shown in Table 19.1. As can be seen, the sample size in each category of
X is n, and the total sample size N = n × c. Although the sample sizes in the categories
of X (the group sizes) are assumed to be equal for the sake of simplicity, this is not
a requirement.

Decomposing the total variation

In examining the differences among means, one-way analysis of variance involves the
decomposition of the total variation observed in the dependent variable. This varia-
tion is measured by the sums of squares corrected for the mean (SS). Analysis of
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variance is so named because it examines the variability or variation in the sample
(dependent variable) and, based on the variability, determines whether there is reason
to believe that the population means differ.

The total variation in Y, denoted by SSy, can be decomposed into two components:

SSy = SSbetween + SSwithin

where the subscripts between and within refer to the categories of X.3 SSbetween is the
variation in Y related to the variation in the means of the categories of X. It represents
variation between the categories of X. In other words, SSbetween is the portion of the
sum of squares in Y related to the independent variable or factor X. For this reason,
SSbetween is also denoted as SSx. SSwithin is the variation in Y related to the variation
within each category of X. SSwithin is not accounted for by X. Therefore, it is referred to
as SSerror. The total variation in Y may be decomposed as

SSy = SSx + SSerror

N

where SSy = ∑(Yi – Y
–

)2

i = 1

c

SSx = ∑n(Y
–

j – Y
–

)2

j = 1

c   n

SSerror = ∑∑(Y
–

ij – Y
–

j)
2

j     i

and Yi = individual observation

Y
–

j = mean for category j

Y
–

= mean over the whole sample or grand mean

Y
–

ij = ith observation in the j th category.

The logic of decomposing the total variation in Y, SSy into SSbetween and SSwithin to
examine differences in group means can be intuitively understood. Recall from
Chapter 18 that, if the variation of the variable in the population was known or esti-
mated, one could estimate how much the sample mean should vary because of
random variation alone. In analysis of variance, there are several different groups (e.g.
heavy, medium, and light users and non-users). If the null hypothesis is true and all

Conducting one-way analysis of variance

489

Categories Total

sample

X
1

X
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..............X
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Y
1

Y
1
..............Y

1
Y

1

Y
2

Y
2

Y
2
..............Y

2
Y

2

� �

– –

Y
n

Y
n

Y
n
..............Y

n
Y

n

Table 19.1 Decomposition of the total variation: one-way ANOVA

Independent variable                          X

Category Y
–

1
Y
–

2
Y
–

3
Y
–

c
Y
–

mean

Between-category variation = SS
between

Within-

category

variation

= SS
within

Total

variation

= SS
y



 

the groups have the same mean in the population, one can estimate how much the
sample means should vary because of sampling (random) variations alone. If the
observed variation in the sample means is more than what would be expected by sam-
pling variation, it is reasonable to conclude that this extra variability is related to
differences in group means in the population.

In analysis of variance, we estimate two measures of variation: within groups
(SSwithin) and between groups (SSbetween). Within-group variation is a measure of how
much the observations, Y values, within a group vary. This is used to estimate the
variance within a group in the population. It is assumed that all the groups have the
same variation in the population. But because it is not known that all the groups have
the same mean, we cannot calculate the variance of all the observations together. The
variance for each of the groups must be calculated individually, and these are com-
bined into an ‘average’ or ‘overall’ variance. Likewise, another estimate of the variance
of the Y values may be obtained by examining the variation between the means. (This
process is the reverse of determining the variation in the means, given the population
variances.) If the population mean is the same in all the groups, then the variation in
the sample means and the sizes of the sample groups can be used to estimate the vari-
ance of Y. The reasonableness of this estimate of the Y variance depends on whether
the null hypothesis is true. If the null hypothesis is true and the population means are
equal, the variance estimate based on between-group variation is correct. On the
other hand, if the groups have different means in the population, the variance esti-
mate based on between-group variation will be too large. Thus, by comparing the Y
variance estimates based on between-group and within-group variation, we can test
the null hypothesis.3 Decomposition of the total variation in this manner also enables
us to measure the effects of X on Y.

Measuring the effects

The effects of X on Y are measured by SSx. Since SSx is related to the variation in the
means of the categories of X, the relative magnitude of SSx increases as the differences
among the means of Y in the categories of X increase. The relative magnitude of SSx

also increases as the variations in Y within the categories of X decrease. The strength
of the effects of X on Y is measured as follows:

The value of η2 varies between 0 and 1. It assumes a value of 0 when all the category
means are equal, indicating that X has no effect on Y. The value of η2 will be 1 when
there is no variability within each category of X but there is some variability between
categories. Thus, η2 is a measure of the variation in Y that is explained by the inde-
pendent variable X. Not only can we measure the effects of X on Y, but we can also
test for their significance.

Testing the significance

In one-way analysis of variance, the interest lies in testing the null hypothesis that the
category means are equal in the population.4 In other words,

H0: µ1 = µ2 = µ3 = . . . = µc

Under the null hypothesis, SSx and SSerror come from the same source of variation. In
such a case, the estimate of the population variance of Y can be based on either
between-category variation or within-category variation. In other words, the estimate
of the population variance of Y,

SSx        SSy – SSerror
η2 = ––––  =  –––––––––––

SSy      SSy
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= mean square due to X
= MSx

or 

= mean square due to error
= MSerror

The null hypothesis may be tested by the F statistic based on the ratio between these
two estimates:

This statistic follows the F distribution, with (c – 1) and (N – c) degrees of freedom
(df). A table of the F distribution is given as Table 5 in the Statistical Appendix at the
end of the book. As mentioned in Chapter 18, the F distribution is a probability dis-
tribution of the ratios of sample variances. It is characterised by degrees of freedom
for the numerator and degrees of freedom for the denominator.5

Interpreting results

If the null hypothesis of equal category means is not rejected, then the independent
variable does not have a significant effect on the dependent variable. On the other
hand, if the null hypothesis is rejected, then the effect of the independent variable is
significant. In other words, the mean value of the dependent variable will be different
for different categories of the independent variable. A comparison of the category
mean values will indicate the nature of the effect of the independent variable. Other
salient issues in the interpretation of results, such as examination of differences
among specific means, are discussed later.

Illustrative applications of one-way analysis of variance

We illustrate the concepts discussed in this section using the data presented in Table
19.2. These data were generated by an experiment in which a bank wanted to examine
the effect of direct mail offers and in-branch promotions upon the level of sales of per-
sonal loans. In-branch promotion was varied at three levels: high (1), medium (2) and
low (3). Direct mail efforts were manipulated at two levels. Either a travel alarm clock
was offered to customers who took out a loan (denoted by 1) or it was not (denoted by
2 in Table 19.2). In-branch promotion and direct mail offer were crossed, resulting in a
3 × 2 design with six cells. Thirty bank branches were randomly selected, and five
branches were randomly assigned to each treatment condition. The experiment ran for
two months. The sales level of loans were measured, normalised to account for extra-
neous factors (e.g., branch size, competitive banks within walking distance) and
converted to a 1 to 10 scale (10 representing the highest level of sales). In addition, a
qualitative assessment was made of the relative affluence of the clientele of each
branch, again using a 1 to 10 scale (10 representing the most affluent client base).

To illustrate the concepts of ANOVA, we begin with an example showing calcula-
tions done by hand and then by computer. Suppose that only one factor, namely
in-branch promotion, was manipulated, that is, let us ignore the direct mail efforts for
the purpose of this illustration. The bank is attempting to determine the effect of in-

SSx/(c – 1) MSxF = ––––––––––––= ––––––
SSerror/(N – c) MSerror

SSerrorS2
y = ––––––

N – c

SSxS2
y = ––––

c – 1
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 branch promotion (X) on the sales of personal loans (Y). For the purpose of illustrat-
ing hand calculations, the data of Table 19.2 are transformed in Table 19.3 to show the
branch (Yij) for each level of promotion.

The null hypothesis is that the category means are equal:

H0: µ1 = µ2 = µ3

To test the null hypothesis, the various sums of squares are computed as follows:

SSy = (10 – 6.067)2 + (9 – 6.067)2 + (10 – 6.067)2 + (8 – 6.067)2 + (9 – 6.067)2 + (8 – 6.067)2

+ (9 – 6.067)2 + (7 – 6.067)2 + (7 – 6.067)2 + (6 – 6.067)2 + (8 – 6.067)2 + (8 – 6.067)2

+ (7 – 6.067)2 + (9 – 6.067)2 + (6 – 6.067)2 + (4 – 6.067)2 + (5 – 6.067)2 + (5 – 6.067)2

+ (6 – 6.067)2 + (4 – 6.067)2 + (5 – 6.067)2 + (7 – 6.067)2 + (6 – 6.067)2 + (4 – 6.067)2

+ (5 – 6.067)2 + (2 – 6.067)2 + (3 – 6.067)2 + (2 – 6.067)2 + (1 – 6.067)2 + (2 – 6.067)2

= 185.867

SSx = 10(8.3 – 6.067)2 + 10(6.2 – 6.067)2 + 10(3.7 – 6.067)2

= 106.067
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Branch number Direct mail offer In-branch promotion Sales Clientele rating

1 1 1 10 9

2 1 1 9 10

3 1 1 10 8

4 1 1 8 4

5 1 1 9 6

6 1 2 8 8

7 1 2 8 4

8 1 2 7 10

9 1 2 9 6

10 1 2 6 9

11 1 3 5 8

12 1 3 7 9

13 1 3 6 6

14 1 3 4 10

15 1 3 5 4

16 2 1 8 10

17 2 1 9 6

18 2 1 7 8

19 2 1 7 4

20 2 1 6 9

21 2 2 4 6

22 2 2 5 8

23 2 2 5 10

24 2 2 6 4

25 2 2 4 9

26 2 3 2 4

27 2 3 3 6

28 2 3 2 10

29 2 3 1 9

30 2 3 2 8

Table 19.2 Direct mail offer, in-branch promotion, sales of personal loans and 

clientele rating



 

SSerror = (10 – 8.3)2 + (9 – 8.3)2 + (10 – 8.3)2 + (8 – 8.3)2 + (9 – 8.3)2 + (8 – 8.3)2 + (9 – 8.3)2

+ (7 – 8.3)2 + (7 – 8.3)2 + (6 – 8.3)2 + (8 – 6.2)2 + (8 – 6.2)2 + (7 – 6.2)2 + (9 – 6.2)2

+ (6 – 6.2)2 + (4 – 6.2)2 + (5 – 6.2)2 + (5 – 6.2)2 + (6 – 6.2)2 + (4 – 6.2)2 + (5 – 3.7)2

+ (7 – 3.7)2 + (6 – 3.7)2 + (4 – 3.7)2 + (5 – 3.7)2 + (2 – 3.7)2 + (3 – 3.7)2 + (2 – 3.7)2

+ (1 – 3.7)2 + (2 – 3.7)2

= 79.8

It can be verified that

SSy = SSx + SSerror

as follows:

185.867 = 106.067 + 79.80

The strength of the effects of X on Y are measured as follows:

= 0.571

In other words, 57.1% of the variation in sales (Y) is accounted for by in-branch pro-
motion (X), indicating a modest effect. The null hypothesis may now be tested.

= 17.944

106.067/(3 – 1)
= –––––––––––––

79.8/(30 – 3)

SSx/(c – 1) MSxF = ––––––––––––  = –––––
SSerror/(N – c) MSerror

106.067
= –––––––

185.897

SSx
η2 = –––

SSy
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Branch number Normalised sales level of in-branch promotion

High Medium Low

1 10 8 5

2 9 8 7

3 10 7 6

4 8 9 4

5 9 6 5

6 8 4 2

7 9 5 3

8 7 5 2

9 7 6 1

10 6 4 2

Column totals 83 62 37

83 62 37
Category means: Y

–
j

––– ––– –––
10 10 10

= 8.3 = 6.2 = 3.7

83 + 62 + 37
Grand means: Y

–
= ––––––––––––––– = 6.067

30

Table 19.3 Effect of in-branch promotion on sales of new bank loans



 

From Table 5 in the Statistical Appendix we see that, for 2 and 27 degrees of freedom,
the critical value of F is 3.35 for α = 0.05. Because the calculated value of F is greater
than the critical value, we reject the null hypothesis. We conclude that the population
means for the three levels of in-branch promotion are indeed different. The relative
magnitudes of the means for the three categories indicate that a high level of in-
branch promotion leads to significantly higher sales of bank loans.

We now illustrate the analysis of variance procedure using a computer program.
The results of conducting the same analysis by computer are presented in Table 19.4.

The value of SSx denoted by main effects is 106.067 with two df; that of SSerror (within-
group sums of squares) is 79.80 with 27 df. Therefore, MSx = 106.067/2 = 53.033 and
MSerror = 79.80/27 = 2.956. The value of F = 53.033/2.956 = 17.944 with 2 and 27 degrees
of freedom, resulting in a probability of 0.000. Since the associated probability is less than
the significance level of 0.05, the null hypothesis of equal population means is rejected.
Alternatively, it can be seen from Table 5 in the Statistical Appendix that the critical value
of F for 2 and 27 degrees of freedom is 3.35. Since the calculated value of F (17.944) is
larger than the critical value, the null hypothesis is rejected. As can be seen from Table
19.4, the sample means with values of 8.3, 6.2 and 3.7 are quite different.

Assumptions in analysis of variance

The procedure for conducting one-way analysis of variance and the illustrative appli-
cations help us understand the assumptions involved. The salient assumptions in
analysis of variance can be summarised as follows.

1 Ordinarily, the categories of the independent variable are assumed to be fixed.
Inferences are made only to the specific categories considered. This is referred to
as the fixed-effects model. Other models are also available. In the random-effects

model, the categories or treatments are considered to be random samples from a
universe of treatments. Inferences are made to other categories not examined in
the analysis. A mixed-effects model results if some treatments are considered fixed
and others random.6

2 The error term is normally distributed, with a zero mean and a constant variance.
The error is not related to any of the categories of X. Modest departures from these
assumptions do not seriously affect the validity of the analysis. Furthermore, the
data can be transformed to satisfy the assumption of normality or equal variances.
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Source df Sum of Mean square F ratio F probability

squares

Between groups 2 106.067 53.033 17.944 0.000

(in-branch promotion)

Within groups (error) 27 79.800 2.956

Total 29 185.867 6.409

Table 19.4 One-way ANOVA: effect of in-branch promotion on the sale of bank loans

Cell means

Level of in-branch Count Mean

promotion

High (1) 10 8.300

Medium (2) 10 6.200

Low (3) 10 3.700

Total 30 6.067



 

3 The error terms are uncorrelated. If the error terms are correlated (i.e. the observa-
tions are not independent), the F ratio can be seriously distorted.

In many data analysis situations, these assumptions are reasonably met. Analysis of
variance is therefore a common procedure.

N-way analysis of variance

In marketing research, one is often concerned with the effect of more than one factor
simultaneously.7 For example:

■ How do consumers’ intentions to buy a brand vary with different levels of price
and different levels of distribution?

■ How do advertising levels (high, medium and low) interact with price levels (high,
medium and low) to influence a brand’s sale?

■ Do income levels (high, medium and low) and age (younger than 35, 35–55, older
than 55) affect consumption of a brand?

■ What is the effect of consumers’ familiarity with a bank (high, medium and low)
and bank image (positive, neutral and negative) on preference for taking a loan out
with that bank?

In determining such effects, n-way analysis of variance can be used. A major
advantage of this technique is that it enables the researcher to examine interactions
between the factors. Interactions occur when the effects of one factor on the depend-
ent variable depend on the level (category) of the other factors. The procedure for
conducting n-way analysis of variance is similar to that for one-way analysis of vari-
ance. The statistics associated with n-way analysis of variance are also defined
similarly. Consider the simple case of two factors X1 and X2 having categories c1 and
c2. The total variation in this case is partitioned as follows:

SStotal = SS due to X1 + SS due to X2 + SS due to interaction of X1 and X2 + SSwithin

or

SSy = SSx1
+ SSx2

+ SSx1x2
+ SSerror

A larger effect of X1 will be reflected in a greater mean difference in the levels of X1
and a larger SSx1. The same is true for the effect of X2. The larger the interaction
between X1 and X2, the larger SSx1x2 will be. On the other hand, if X1 and X2 are inde-
pendent, the value of SSx1x2 will be close to zero.8

The strength of the joint effect of two factors, called the overall effect, or multiple
η2, is measured as follows:

multiple η2 = (SSx1
+ SSx2

+ SSx1x2
)/SSy

The significance of the overall effect may be tested by an F test, as follows:

MSx1,x2,x1x2= –––––––––
MSerror

SSx1,x2,x1x2
/dfn

= –––––––––––
SSerror /dfd

(SSx1
+ SSx2

+ SSx1x2
)/dfn

F = ––––––––––––––––––––––
SSerror /dfd
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Multiple η2

The strength of the joint effect

of two (or more) factors, or

the overall effect.

Significance of the

overall effect

A test that some differences

exist between some of the

treatment groups.

Interaction

When assessing the

relationship between two

variables, an interaction

occurs if the effect of X
1

depends on the level of X
2
,

and vice versa.



 

where dfn = degrees of freedom for the numerator
= (c1 – 1) + (c2 – 1) + (c1 – 1) (c2 – 1)
= c1c2 – 1

dfd = degrees of freedom for the denominator
= N – c1c2

MS = mean square.

If the overall effect is significant, the next step is to examine the significance of the

interaction effect.9 Under the null hypothesis of no interaction, the appropriate F test
is:

where dfn = (c1 – 1)(c2 – 1)
dfd = N – c1c2

If the interaction effect is found to be significant, then the effect of X1 depends on the
level of X2, and vice versa. Since the effect of one factor is not uniform but varies with
the level of the other factor, it is not generally meaningful to test the significance of

the main effect of each factor. It is meaningful to test the significance of each main
effect of each factor, if the interaction effect is not significant.10

The significance of the main effect of each factor may be tested as follows for X1:

where dfn = c1 – 1
dfd = N – c1c2

The foregoing analysis assumes that the design was orthogonal, or balanced (the
number of cases in each cell was the same). If the cell size varies, the analysis becomes
more complex.

Returning to the data in Table 19.2, let us now examine the effect of the level of in-
branch promotion and direct mail efforts on the sales of personal loans. The results of
running a 3 × 2 ANOVA on the computer are presented in Table 19.5.

For the main effect of level of promotion, the sum of squares SSxp, degrees of free-
dom, and mean square MSxp are the same as earlier determined in Table 19.4. The
sum of squares for direct mail SSxd = 53.333 with 1 df, resulting in an identical value
for the mean square MSxd. The combined main effect is determined by adding the
sum of squares due to the two main effects (SSxp + SSxd = 106.067 + 53.333 =
159.400) as well as adding the degrees of freedom (2 + 1 = 3). For the promotion and
direct mail interaction effect, the sum of squares SSxpxd = 3.267 with (3 – 1) × (2 – 1)
= 2 degrees of freedom, resulting in MSxpxd = 3.267/2 = 1.633. For the overall (model)
effect, the sum of squares is the sum of squares for promotion main effect, direct mail

MSx1= –––––––
MSerror

SSx1
/dfn

F = –––––––––
SSerror/dfd

MSx1x2= –––––––
MSerror

SSx1x2
/dfn

F = –––––––––
SSerror/dfd

Chapter 19 • Analysis of variance and covariance

496

Significance of the

interaction effect

A test of the significance of

the interaction between two

or more independent

variables.

Significance of the main

effect of each factor

A test of the significance of

the main effect for each

individual factor.



 

main effect, and interaction effect = 106.067 + 53.333 + 3.267 = 162.667 with 2 + 1 +
2 = 5 degrees of freedom, resulting in a mean square of 162.667/5 = 32.533. Note,
however, the error statistics are now different from those in Table 19.4. This is due to
the fact that we now have two factors instead of one, SSerror = 23.2 with (30 – (3 × 2))
or 24 degrees of freedom resulting in MSerror = 23.2/24 = 0.967.

The test statistic for the significance of the overall effect is

= 33.643

with 5 and 24 degrees of freedom, which is significant at the 0.05 level.
The test statistic for the significance of the interaction effect is

= 1.690

with 2 and 24 degrees of freedom, which is not significant at the 0.05 level.

1.633
F = –––––

0.967

32.533
F = ––––––

0.967
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Source of variation Sum of df Mean F Sig. of F ω
2

squares square

Main effects

In-branch promotion 106.067 2 53.033 54.862 0.000 0.557

Direct mail 53.333 1 53.333 55.172 0.000 0.280

Combined 159.400 3 53.133 54.966 0.000

Two-way interaction 3.267 2 1.633 1.690 0.206

Model 162.667 5 32.533 33.655 0.000

Residual (error) 23.200 24 0.967

Total 185.867 29 6.409

Cell means

In-branch promotion Direct mail Count Mean

High Yes 5 9.200

High No 5 7.400

Medium Yes 5 7.600

Medium No 5 4.800

Low Yes 5 5.400

Low No 5 2.000

Factor level means

In-branch promotion Direct mail Count Mean

High 10 8.300

Medium 10 6.200

Low 10 3.700

Yes 15 7.400

No 15 4.733

Grand mean 30 6.067

Table 19.5 Two-way analysis of variance



 

As the interaction effect is not significant, the significance of the main effects can
be evaluated. The test statistic for the significance of the main effect of promotion is

= 54.842

with 2 and 24 degrees of freedom, which is significant at the 0.05 level.
The test statistic for the significance of the main effect of direct mail is

= 55.153

with 1 and 24 degrees of freedom, which is significant at the 0.05 level. Thus, higher
levels of promotions result in higher sales. The use of a direct mail campaign results
in higher sales. The effect of each is independent of the other.

The following example illustrates the use of n-way analysis.

Country affects TV reception11

A study examined the impact of country affiliation on the credibility of product attribute claims

for televisions. The dependent variables were the following product-attribute claims: good

sound, reliability, crisp-clear picture and stylish design. The independent variables which were

manipulated consisted of price, country affiliation and store distribution. A 2 × 2 × 2

between-subjects design was used. Two levels of price, ‘low’ and ‘high’, two levels of country

affiliation, South Korea and Germany, and two levels of store distribution, Kaufhof and without

Kaufhof, were specified.

Data were collected from two shopping centres in a large German city. Thirty respondents

were randomly assigned to each of the eight treatment cells for a total of 240 subjects.

Table 1 presents the results for manipulations that had significant effects on each of the

dependent variables.

The directions of country-by-distribution interaction effects for the three dependent vari-

ables are shown in Table 2. Although the credibility ratings for the crisp-clear picture, reliability

and stylish design claims are improved by distributing the Korean-made TV set through

Kaufhof rather than some other distributor, the same is not true of a German-made set.

Similarly, the directions of country-by-price interaction effects for the two dependent variables

are shown in Table 3. At the ‘high’ price level, the credibility ratings for the ‘good sound’ and

‘reliability’ claims are higher for the German-made TV set than for its Korean counterpart, but

there is little difference related to country affiliation when the product is at the ‘low’ price.

This study demonstrates that credibility of attribute claims, for products traditionally

exported to Germany by a company in a newly industrialised country, can be significantly

improved if the same company distributes the product through a prestigious German retailer

53.333
F = ––––––

0.967

53.033
F = ––––––

0.967
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Effect Univariate

Dependent variable F df p

Country × price Good sound 7.57 1.232 0.006

Country × price Reliability 6.57 1.232 0.011

Country × distribution Crisp-clear picture 6.17 1.232 0.014

Country × distribution Reliability 6.57 1.232 0.011

Country × distribution Stylish design 10.31 1.232 0.002

Table 1  Analyses for significant manipulations



 

and considers making manufacturing investments in Europe. Specifically, three product attrib-

ute claims (crisp-clear picture, reliability and stylish design) are perceived as more credible

when the TVs are made in South Korea if they are also distributed through a prestigious

German retailer. Also, the ‘good sound’ and ‘reliability’ claims for TVs are perceived to be

more credible for a German-made set sold at a higher price, possibly offsetting the potential

disadvantage of higher manufacturing costs in Europe. ■

Analysis of covariance

When examining the differences in the mean values of the dependent variable related
to the effect of the controlled independent variables, it is often necessary to take into
account the influence of uncontrolled independent variables. For example:

■ In determining how consumers’ intentions to buy a brand vary with different levels
of price, attitude towards the brand may have to be taken into consideration.

■ In determining how different groups exposed to different commercials evaluate a
brand, it may be necessary to control for prior knowledge.

■ In determining how different price levels will affect a household’s breakfast cereal
consumption, it may be essential to take household size into account.

In such cases, analysis of covariance should be used. Analysis of covariance includes at
least one categorical independent variable and at least one interval or metric-inde-
pendent variable. The categorical independent variable is called a factor, whereas the
metric-independent variable is called a covariate. The most common use of the
covariate is to remove extraneous variation from the dependent variable, because
the effects of the factors are of major concern. The variation in the dependent variable
due to the covariates is removed by an adjustment of the dependent variable’s mean
value within each treatment condition.

An analysis of variance is then performed on the adjusted scores.12 The significance
of the combined effect of the covariates, as well as the effect of each covariate, is tested
by using the appropriate F tests. The coefficients for the covariates provide insights

Analysis of covariance
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Country × distribution Crisp clear picture Reliability Stylish design

South Korea

Kaufhof 3.67 3.42 3.82

Without Kaufhof 3.18 2.88 3.15

Germany

Kaufhof 3.60 3.47 3.53

Without Kaufhof 3.77 3.65 3.75

Table 2  Country by distribution interaction means

Country × price Good sound Reliability

Low price

Kaufhof 3.75 3.40

Without Kaufhof 3.53 3.45

High price

Kaufhof 3.15 2.90

Without Kaufhof 3.73 3.67

Table 3  Country by price interaction means



 

into the effect that the covariates exert on the dependent variable. Analysis of covari-
ance is most useful when the covariate is linearly related to the dependent variable
and is not related to the factors.13

Illustrative application of covariance

We again use the data of Table 19.2 to illustrate analysis of covariance. Suppose that
we wanted to determine the effect of in-branch promotion and direct mail on sales
while controlling for the affluence of clientele. It is felt that the affluence of the clien-
tele may also have an effect on the sales of personal loans (recognising that there may
be certain clients who are so affluent that they may never need to take out a loan).
The dependent variable consists of loan sales. As before, promotion has three levels
and direct mail has two. Clientele affluence is measured on an interval scale and
serves as the covariate. The results are shown in Table 19.6.

As can be seen, the sum of squares attributable to the covariate is very small
(0.838) with 1 df, resulting in an identical value for the mean square. The associated F
value is 0.838/0.972 = 0.862, with 1 and 23 degrees of freedom, which is not signifi-
cant at the 0.05 level. Thus, the conclusion is that the affluence of the clientele does
not have an effect on the sales of personal loans. If the effect of the covariate is signifi-
cant, the sign of the raw coefficient can be used to interpret the direction of the effect
on the dependent variable.

Issues in interpretation

Important issues involved in the interpretation of ANOVA results include interac-
tions, relative importance of factors, and multiple comparisons.

Interactions

The different interactions that can arise when conducting ANOVA on two or more
factors are shown in Figure 19.3.
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Source of variation Sum of squares df Mean square F Sig. of F

Covariates 

Clientele 0.838 1 0.838 0.862 0.363

Main effects

Promotion 106.067 2 53.033 54.546 0.000

Direct mail 53.333 1 53.333 54.855 0.000

Combined 159.400 3 53.133 54.649 0.000

Two-way interaction

Promotion*Direct mail 3.267 2 1.633 1.680 .208

Model 163.505 6 27.251 28.028 .000

Residual (error) 22.362 23 0.972

Total 185.867 29 6.409

Covariate Raw coefficient

Clientele –0.078

Table 19.6 Analysis of covariance



 
One outcome is that ANOVA may indicate that there are no interactions (the inter-

action effects are not found to be significant). The other possibility is that the
interaction is significant. An interaction effect occurs when the effect of an independ-
ent variable on a dependent variable is different for different categories or levels of
another independent variable. The interaction may be ordinal or disordinal. In ordi-

nal interaction, the rank order of the effects related to one factor does not change
across the levels of the second factor. Disordinal interaction, on the other hand,
involves a change in the rank order of the effects of one factor across the levels of
another. If the interaction is disordinal, it could be of a non-crossover or crossover
type.14 These interaction cases are displayed in Figure 19.4, which assumes that there
are two factors, X1 with three levels (X11, X12 and X13) and X2 with two levels (X21 and
X22). Case 1 depicts no interaction.

The effects of X1 on Y are parallel over the two levels of X2. Although there is some
departure from parallelism, this is not beyond what might be expected from chance.
Parallelism implies that the net effect of X22 over X21 is the same across the three levels
of X1. In the absence of interaction, the joint effect of X1 and X2 is simply the sum of
their individual main effects.

Issues in interpretation
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Possible

interaction effects

No interaction

(case 1)

Interaction

Ordinal

(case 2)

Disordinal

Non-crossover

(case 3)

Crossover

(case 4)

Figure 19.3

A classification of

interaction effects

Ordinal interaction

An interaction where the rank

order of the effects

attributable to one factor does

not change across the levels

of the second factor.

Disordinal interaction

The change in the rank order

of the effects of one factor

across the levels of another.

Case 1:

No interaction

Y

Case 2:

Ordinal interaction

X
21

X
22

Y

X
11

X
12

X
13

Case 4:

Disordinal interaction:

Crossover

Y

X
11

X
12

X
13

Case 3:

Disordinal interaction:

Non-crossover

Y

X
22

X
21

X
21

X
22

X
22

X
21

X
11

X
12

X
13

X
11

X
12

X
13

Figure 19.4

Patterns of interaction



 

Case 2 depicts an ordinal interaction. The line segments depicting the effects of X1

and X2 are not parallel. The difference between X22 and X21 increases as we move from
X11 to X12 and from X12 to X13, but the rank order of the effects of X1 is the same over
the two levels of X2. This rank order, in ascending order, is X11, X12, X13, and it
remains the same for X21 and X22.

Disordinal interaction of a non-crossover type is displayed by case 3. The lowest
effect of X1 at level X21 occurs at X11, and the rank order of effects is X11, X12, X13. At
level X22, however, the lowest effect of X1 occurs at X12, and the rank order is changed
to X12, X11, X13. Because it involves a change in rank order, disordinal interaction is
stronger than ordinal interaction.

In disordinal interactions of a crossover type, the line segments cross each other, as
shown by case 4 in Figure 19.4. In this case, the relative effect of the levels of one
factor changes with the levels of the other. Note that X22 has a greater effect than X21

when the levels of X1 are X11 and X12. When the level of X1 is X13, the situation is
reversed, and X21 has a greater effect than X22. (Note that in cases 1, 2 and 3, X22 had a
greater impact than X21 across all three levels of X1.) Hence, disordinal interactions of
a crossover type represent the strongest interactions.15

Relative importance of factors

Experimental designs are usually balanced in that each cell contains the same number of
respondents. This results in an orthogonal design in which the factors are uncorrelated.
Hence, it is possible to determine unambiguously the relative importance of each factor
in explaining the variation in the dependent variable.16 The most commonly used
measure in ANOVA is omega squared, ω2. This measure indicates what proportion of
the variation in the dependent variable is related to a particular independent variable or
factor. The relative contribution of a factor X is calculated as follows:17

Normally, ω2 is interpreted only for statistically significant effects.18 In Table 19.4, ω2

associated with level of in-branch promotion is calculated as follows:

= 0.557

In Table 19.4 note that:

SStotal = 106.067 + 53.333 + 3.267 + 23.2
= 185.867

Likewise, the ω2 associated with direct mail is:

= 0.280

52.366= –––––––
186.834

53.333 – (1 × 0.967)
ω2

d = –––––––––––––––––
185.867 + 0.967

104.133
= –––––––

186.834

106.067 – (2 × 0.967)
ω2

p = –––––––––––––––––––
185.867 + 0.967

SSx – (dfx × MSerror)
ω2

x = –––––––––––––––––
SS

total
+ MS

error
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Omega squared (ω2)

A measure indicating the

proportion of the variation in

the dependent variable that is

related to a particular

independent variable or factor.



 

As a guide to interpreting ω, a large experimental effect produces an ω2 of 0.15 or
greater, a medium effect produces an index of around 0.06, and a small effect pro-
duces an index of 0.01.19 In Table 19.5, while the effect of promotion and direct mail
are both large, the effect of promotion is much larger.

Multiple comparisons

The ANOVA F test examines only the overall difference in means. If the null hypothe-
sis of equal means is rejected, we can only conclude that not all the group means are
equal. Only some of the means may be statistically different, however, and we may
wish to examine differences among specific means. This can be done by specifying
appropriate contrasts, or comparisons used to determine which of the means are sta-
tistically different. Contrasts may be a priori or a posteriori. A priori contrasts are
determined before conducting the analysis, based on the researcher’s theoretical
framework. Generally, a priori contrasts are used in lieu of the ANOVA F test. The
contrasts selected are orthogonal (they are independent in a statistical sense).

A posteriori contrasts are made after the analysis. These are generally multiple com-

parison tests. They enable the researcher to construct generalised confidence intervals
that can be used to make pairwise comparisons of all treatment means. These tests,
listed in order of decreasing power, include least significant difference, Duncan’s multi-
ple range test, Student-Newman-Keuls, Tukey’s alternate procedure, honestly significant
difference, modified least significant difference, and Scheffe’s tests. Of these tests, least
significant difference is the most powerful and Scheffe’s the most conservative. For fur-
ther discussion on a priori and a posteriori contrasts, refer to the literature.20

Our discussion so far has assumed that each subject is exposed to only one treat-
ment or experimental condition. Sometimes subjects are exposed to more than one
experimental condition, in which case repeated measures ANOVA should be used.

Repeated measures ANOVA

In marketing research, there are often large differences in the background and indi-
vidual characteristics of respondents. If this source of variability can be separated
from treatment effects (effects of the independent variable) and experimental error,
then the sensitivity of the experiment can be enhanced. One way of controlling the
differences between subjects is by observing each subject under each experimental
condition (see Table 19.7).

In this sense, each subject serves as its own control. For example, in a survey
attempting to determine differences in evaluations of various airlines, each respon-
dent evaluates all the major competing airlines. In a study examining the differences
among heavy users, medium users, light users and non-users of a brand, each respon-
dent provides ratings on the relative importance of each attribute. Because repeated
measurements are obtained from each respondent, this design is referred to as within-
subjects design or repeated measures analysis of variance. This differs from the
assumption we made in our earlier discussion that each respondent is exposed to only
one treatment condition, also referred to as between-subjects design.21 Repeated
measures analysis of variance may be thought of as an extension of the paired-
samples t test to the case of more than two related samples.

In the case of a single factor with repeated measures, the total variation, with
nc – 1 degrees of freedom, may be split into between-people variation and within-
people variation.

SStotal = SSbetween people + SSwithin people

Repeated measures ANOVA
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Contrasts

In ANOVA, a method of

examining differences among

two or more means of the

treatment groups.

A priori contrasts

Contrasts determined before

conducting the analysis,

based on the researcher’s

theoretical framework.

A posteriori contrasts

Contrasts made after

conducting the analysis.

These are generally multiple

comparison tests.

Multiple comparison tests

A posteriori contrasts that

enable the researcher to

construct generalised

confidence intervals that can

be used to make pairwise

comparisons of all treatment

means.

Repeated measures

analysis of variance

An ANOVA technique used

when respondents are

exposed to more than one

treatment condition and

repeated measurements are

obtained.



 

The between-people variation, which is related to the differences between the means
of people, has n – 1 degrees of freedom. The within-people variation has n(c – 1)
degrees of freedom. The within-people variation may, in turn, be divided into two
different sources of variation. One source is related to the differences between treat-
ment means, and the second consists of residual or error variation. The degrees of
freedom corresponding to the treatment variation are c – 1 and that corresponding to
residual variation are (c – 1)(n – 1). Thus,

SSwithin people = SSx + SSerror

A test of the null hypothesis of equal means may now be constructed in the usual
way:

So far we have assumed that the dependent variable is measured on an interval or
ratio scale. If the dependent variable is non-metric, however, a different procedure
should be used.

Non-metric analysis of variance

Non-metric analysis of variance examines the difference in the central tendencies of
more than two groups when the dependent variable is measured on an ordinal scale. One
such procedure is the k-sample median test. As its name implies, this is an extension of
the median test for two groups, which was considered in Chapter 18. The null hypothesis
is that the medians of the k populations are equal. The test involves the computation of a
common median over the k samples. Then, a 2 × k table of cell counts based on cases
above or below the common median is generated. A chi-square statistic is computed. The
significance of the chi-square implies a rejection of the null hypothesis.

A more powerful test is the Kruskal-Wallis one-way analysis of variance. This is
an extension of the Mann-Whitney test (Chapter 18). This test also examines the dif-
ference in medians. The null hypothesis is the same as in the k-sample median test,

MSx= –––––––
MSerror

SSx /(c – 1)
F = –––––––––––––––––

SSerror /(n – 1(c – 1)
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Non-metric analysis of

variance

An ANOVA technique for

examining the difference in

the central tendencies of

more than two groups when

the dependent variable is

measured on an ordinal scale.

k-sample median test

A non-parametric test used to

examine differences among

more than two groups when

the dependent variable is

measured on an ordinal scale.

Kruskal-Wallis one-way

analysis of variance

A non-metric ANOVA test that

uses the rank value of each

case, not merely its location

relative to the median.

Subject Categories Total

no. sample

X
1

X
2

X
3
............... X

c

1 Y
11

Y
12

Y
13

..............Y
1c

Y
1

2 Y
21

Y
22

Y
23

..............Y
2c

Y
2

� �

n Y
n1

Y
n2

Y
n3

..............Y
nc

Y
N

Table 19.7 Decomposition of the total variation: repeated measures ANOVA

Independent variable                                         X

Category Y
–

1
Y
–

2
Y
–

3
Y
–

c
Y
–

mean

Within-people variation = SS
within people

Between-people

variation

= SS
between people Total variation

= SSy



 

but the testing procedure is different. All cases from the k groups are ordered in a
single ranking. If the k populations are the same, the groups should be similar in
terms of ranks within each group. The rank sum is calculated for each group. From
these, the Kruskal-Wallis H statistic, which has a chi-square distribution, is computed.

The Kruskal-Wallis test is more powerful than the k-sample median test because it
uses the rank value of each case, not merely its location relative to the median. If there
are a large number of tied rankings in the data, however, the k-sample median test
may be a better choice.

Non-metric analysis of variance is not popular in marketing research. Another pro-
cedure that is also only rarely used is multivariate analysis of variance.

Multivariate analysis of variance

Multivariate analysis of variance (MANOVA) is similar to analysis of variance
(ANOVA) except that instead of one metric-dependent variable we have two or more.
The objective is the same, since MANOVA is also concerned with examining differ-
ences between groups. Although ANOVA examines group differences on a single
dependent variable, MANOVA examines group differences across multiple dependent
variables simultaneously. In ANOVA, the null hypothesis is that the means of the
dependent variable are equal across the groups. In MANOVA, the null hypothesis is
that the vector of the means of multiple dependent variables is equal across groups.
Multivariate analysis of variance is appropriate when there are two or more depend-
ent variables that are correlated. If there are multiple dependent variables that are
uncorrelated or orthogonal, ANOVA on each of the dependent variables is more
appropriate than MANOVA.22

As an example, suppose that four groups, each consisting of 100 randomly selected
individuals, were exposed to four different commercials about the ‘Series 3’ BMW.
After seeing the commercial, each individual provided ratings on preference for the
‘Series 3’, preference for BMW, and preference for the commercial itself. Because these
three preference variables are correlated, multivariate analysis of variance should be
conducted to determine which commercial is the most effective (produced the highest
preference across the three preference variables). The following example illustrates the
application of ANOVA and MANOVA in international marketing research.

The commonality of unethical research practices worldwide23

A study examined marketing professionals’ perceptions of how common unethical practices in

marketing research were across different countries, i.e. ‘the commonality of unethical market-

ing research practices’. A sample of marketing professionals was drawn from Australia,

Britain, Canada and the United States.

Respondents’ evaluations were analysed using MANOVA and ANOVA techniques. The pre-

dictor variable was the ‘country of respondent’ and 15 evaluations of ‘commonality’ served as

the criterion variables. The F values from the ANOVA analyses indicated that only two of the

15 commonality evaluations achieved significance (p < 0.05 or better). Further, the MANOVA

F value was not statistically significant, implying the lack of overall differences in commonality

evaluations across respondents of the four countries. It was concluded that marketing profes-

sionals in the four countries demonstrate similar perceptions of the commonality of unethical

research practices. This finding is not surprising, given other research evidence that organisa-

tions in the four countries reflect similar corporate cultures. ■
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An ANOVA technique using
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variables.
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In ternet  and computer  app l icat ions

The computer packages SPSS and SAS have programs for conducting analysis of
variance and covariance. In addition to the basic analysis that we have considered,
these programs can also perform more complex analysis. Minitab and Excel also
offer some programs. Given the importance of analysis of variance and covariance,
several programs are available in each package.

SPSS

One-way ANOVA can be efficiently performed using the program ONEWAY. This
program also allows the user to test a priori and a posteriori contrasts. For perform-
ing n-way analysis of variance, the program ANOVA can be used. Although
covariates can be specified, ANOVA does not perform a full analysis of covariance.
For comprehensive analysis of variance or analysis of covariance, including repeated
measures and multiple dependent measures, the MANOVA procedure is recom-
mended. For non-metric analysis of variance, including the k-sample median test
and Kruskal-Wallis one-way analysis of variance, the program NPAR TESTS should
be used.

SAS

The main program for performing analysis of variance in the case of a balanced
design is ANOVA. This program can handle data from a wide variety of experimen-
tal designs, including multivariate analysis of variance and repeated measures. Both
a priori and a posteriori contrasts can be tested. For unbalanced designs, the more
general GLM procedure can be used. This program performs analysis of variance,
analysis of covariance, repeated measures analysis of variance, and multivariate
analysis of variance. It also allows the testing of a priori and a posteriori contrasts.
Whereas GLM can also be used for analysing balanced designs, it is not as efficient
as ANOVA for such models. The VARCOMP procedure computes variance compo-
nents. For non-metric analysis of variance, the NPAR1WAY procedure can be used.
For constructing designs and randomised plans, the PLAN procedure can be used.

Minitab

Analysis of variance and covariance can be accessed from the Stats>ANOVA func-
tion. This function performs one way ANOVA, one-way unstacked ANOVA,
two-way ANOVA, analysis of means, balanced ANOVA, analysis of covariance, gen-
eral linear model, main effects plot, interactions plot and residual plots. In order to
compute the mean and standard deviation, the crosstab function must be used. To
obtain F and p values, use the balanced ANOVA.

Excel

Both a one-way ANOVA and two-way ANOVA can be performed under the
Tools>Data Analysis function. The two-way ANOVA has the features of a two-
factor with replication and a two-factor without replication. The two-factor with
replication includes more than one sample for each group of data, while the two-
factor without replication does not include more than one sampling per group.



 

Summary

In ANOVA and ANCOVA, the dependent variable is metric and the independent vari-
ables are all categorical and metric variables. One-way ANOVA involves a single
independent categorical variable. Interest lies in testing the null hypothesis that the
category means are equal in the population. The total variation in the dependent vari-
able may be decomposed into two components: variation related to the independent
variable and variation related to error. The variation is measured in terms of the sum
of squares corrected for the mean (SS). The mean square is obtained by dividing the
SS by the corresponding degrees of freedom (df). The null hypothesis of equal means
is tested by an F statistic, which is the ratio of the mean square related to the inde-
pendent variable to the mean square related to error.

N-way analysis of variance involves the simultaneous examination of two or more
categorical independent variables. A major advantage is that the interactions between
the independent variables can be examined. The significance of the overall effect,
interaction terms, and the main effects of individual factors are examined by appro-
priate F tests. It is meaningful to the significance of main effects only if the
corresponding interaction terms are not significant.

ANCOVA includes at least one categorical independent variable and at least one
interval or metric-independent variable. The metric-independent variable, or covari-
ate, is commonly used to remove extraneous variation from the dependent variable.

When analysis of variance is conducted on two or more factors, interactions can
arise. An interaction occurs when the effect of an independent variable on a depend-
ent variable is different for different categories or levels of another independent
variable. If the interaction is significant, it may be ordinal or disordinal. Disordinal
interaction may be of a non-crossover or crossover type. In balanced designs, the rela-
tive importance of factors in explaining the variation in the dependent variable is
measured by omega squared (ω2). Multiple comparisons in the form of a priori or a
posteriori contrasts can be used for examining differences among specific means.

In repeated measures analysis of variance, observations on each subject are
obtained under each treatment condition. This design is useful for controlling for the
differences in subjects that exist prior to the experiment. Non-metric analysis of vari-
ance involves examining the differences in the central tendencies of two or more
groups when the dependent variable is measured on an ordinal scale. Multivariate
analysis of variance (MANOVA) involves two or more metric dependent variables.
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1 Discuss the similarities and differences between analysis of variance and analysis of

covariance.

2 What is the relationship between analysis of variance and the t test?

3 What is total variation? How is it decomposed in a one-way analysis of variance?

4 What is the null hypothesis in one-way ANOVA? What basic statistic is used to test

the null hypothesis in one-way ANOVA? How is this statistic computed?

5 How does n-way analysis of variance differ from the one-way procedure?

6 How is the total variation decomposed in n-way analysis of variance?

7 What is the most common use of the covariate in ANCOVA?

8 What is the difference between ordinal and disordinal interaction?

Questions ?????
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9 How is the relative importance of factors measured in a balanced design?

10 What is an a priori contrast?

11 What is the most powerful test for making a posteriori contrasts? Which test is the

most conservative?

12 What is meant by repeated measures ANOVA? Describe the decomposition of varia-

tion in repeated measures ANOVA.

13 What are the differences between metric and non-metric analyses of variance?

14 Describe two tests used for examining differences in central tendencies in non-

metric ANOVA.

15 What is multivariate analysis of variance? When is it appropriate?
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